Nanobodies as a Versatile Approach for Developing Next Generation Immunotherapies

Immunotherapy World Conference
26 January 2016
Certain statements, beliefs and opinions in this presentation are forward-looking, which reflect the Company or, as appropriate, the Company directors’ current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this presentation regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this presentation as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its parent or subsidiary undertakings or any such person’s officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this presentation or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this presentation.
Ablynx

Powerful platform generating potentially innovative medicines

CORPORATE
- Platform technology and late-stage clinical development company
- 350 staff in Ghent, Belgium

TECHNOLOGY
- Pioneer in next generation antibody-derived drugs – Nanobodies®
- >500 patent applications and granted patents; critical know-how
- Validation through multiple partnerships with top tier pharma companies

PRODUCTS
- ~40 wholly-owned and partnered programmes
- 1 Phase III and 4 Phase II studies ongoing in-house
- First potential launch in 2018

PARTNERS
- AbbVie, Boehringer Ingelheim, Eddingpharm, Genzyme, Merck &Co., Inc., Merck KGaA, Novartis, Novo Nordisk and Taisho Pharmaceuticals
- >€380M cash received; >€7Bn in potential milestones + royalties

FINANCIALS
- €262M in cash at 30th September 2015
- €277M raised in equity
- €100M of issued Convertible Bonds maturing in 2020

>€380M cash received; >€7Bn in potential milestones + royalties

• AbbVie, Boehringer Ingelheim, Eddingpharm, Genzyme, Merck &Co., Inc., Merck KGaA, Novartis, Novo Nordisk and Taisho Pharmaceuticals
• >€380M cash received; >€7Bn in potential milestones + royalties

• €262M in cash at 30th September 2015
• €277M raised in equity
• €100M of issued Convertible Bonds maturing in 2020
What are Nanobodies?

Unique technology
Nanobodies

Derived from heavy-chain only antibodies

- *Camelid* heavy-chain only antibodies are stable and fully functional
- Nanobodies represent the next generation of antibody-derived biologics

Ablynx’s Nanobody
- small and robust
- easily linked together
- sequence homology comparable to humanised/human mAbs
- nano- to picomolar affinities
- able to bind and block challenging targets
- multiple administration routes
- manufacturing in microbial cells
Ablynx Nanobody discovery process

Rapid generation of novel biologics in 12-18 months

- **Immunize llama with antigen**
- **Draw blood 6–12 weeks later**
- **Conventional antibodies**
- **VH1**
- **CH2**
- **CH3**
- **VH2**
- **Ablynx’s Nanobody®**
- **Use proprietary synthetic Nanobody phage libraries**

- **Manufacture in micro-organisms**
- **Format and sequence optimize Nanobody to achieve desired properties**
 - plus half-life extension (HLE)
- **Selection of Nanobody lead panel via phage display, YSD, or NGS**
 - wide epitope coverage
 - low 0.1-10 nM affinity range

- **Clinical trials**

Glycine-serine linkers from C-terminus to N-terminus
Nanobodies
A highly versatile platform

Mix and match
Targeting different pathways at once with a single Nanobody construct, e.g. multiple checkpoint inhibitors

Multiple delivery routes
- Inhalation
- Needle-free
- Oral-to-topical
- Ocular

Customised half-life extension
- Weeks/days/hours
- Fc
- Albumin binding Nanobody

Cell killing
- Nanobody-drug conjugates
- Ag-1

Cell- / tissue-homing
- Cell specificity
- Immune cell recruitment
- Tissue-specific targeting

Manufacturing
- High-yield, high-concentration, low-viscosity, microbial production

Challenging and intractable targets
- Nanobodies against ion channels and GPCRs
- Nanobodies can reach conserved cryptic epitopes

Multiple delivery routes
- Inhalation
- Needle-free
- Oral-to-topical
- Ocular

Customised half-life extension
- Weeks/days/hours
- Fc
- Albumin binding Nanobody

Cell killing
- Nanobody-drug conjugates
- Ag-1

Cell- / tissue-homing
- Cell specificity
- Immune cell recruitment
- Tissue-specific targeting

Manufacturing
- High-yield, high-concentration, low-viscosity, microbial production

Challenging and intractable targets
- Nanobodies against ion channels and GPCRs
- Nanobodies can reach conserved cryptic epitopes
Unique modularity of Nanobodies

Building a custom therapeutic

Multi-specifics: Individual binding arms with tailored affinity

12-15kDa

GS-linker
(from C- to N-term): custom linker length for maximum efficacy

Bi-paratopic Nanobody:
binding multiple identical or different epitopes on same target

anti-Target A

anti-Target B

anti-HSA

payload

Half-life extension
Possibility to extend from hours to ~20 days)

Microtubulin or DNA inhibitors, toxins
Multi-valent format improves potency

Tri-valent anti-RSV Nanobody ALX-0171

- Improve activity and strain coverage by multi-valency
- Superior virus neutralisation as compared to palivizumab
- 5-fold more clinical isolates neutralised below LLOD with ALX-0171 compared with palivizumab

Improved potency over mAb

Increased strain coverage

<table>
<thead>
<tr>
<th></th>
<th>A-strain</th>
<th>B-strain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>32</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>palivizumab</td>
<td>0 (0%)</td>
<td>11 (38%)</td>
<td>11 (18%)</td>
</tr>
<tr>
<td>ALX-0171</td>
<td>30 (94%)</td>
<td>23 (79%)</td>
<td>53 (87%)</td>
</tr>
<tr>
<td>p value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Number of strains neutralised below lower limit of detection
Multi-specific blocks two cytokines at once

Bi-specific anti-IL-17A/IL-17F Nanobody ALX-0761

- ALX-0761 blocks both IL-17A and IL-17F for more effective blocking of the inflammatory response
- Binds human serum albumin for improved PK
- Proof of concept in primate CIA model
- ALX-0761 in development by Merck KGaA
 - completed Phase I SAD study in healthy volunteers
 - completed Phase Ib study in patients with psoriasis

Proof-of-concept achieved in primate collagen induced arthritis model\(^1\)

1 Poster available on Ablynx website: [R&D>pipeline](#)
Bi-specific synergistically improves potency

Anti-CXCR4/CD4 enhances HIV neutralisation

- Synergistic improvement in HIV blockade of CXCR4/CD4 bi-specific Nanobody over mono-valent Nanobodies
 - up to 320-fold enhancement with bi-specific versus mono-specifics
 - only 2-fold enhancement with mixture of mono-specifics in solution (1:1) over mono-specifics alone

Blockade of HIV infection *in vitro*

Infection of MT-4 T cells with NL4.3 (X4) HIV strain

Bi-specific Nanobody is ~160 fold more potent than mixture of mono-specifics
Bi-specifics improve cell targeting

Increased activity on specific cell populations

- Increase selectivity to specific cells by combining
 - functional arm: antagonist of a functional receptor with low affinity
 - anchor arm: cell-specific binder with moderate-high affinity

Bi-specific yield improvements in cell targeting typically of 10-1000-fold depending on target combinations
Multi-valent and multi-specific Nanobodies

Proven capability and performance

- Ease of formatting and manufacture of multi-valent, bi-paratopic, and multi-specifics allows rapid development of differentiating biologics
 - achieve “order of magnitude” increases in potency and specificity
 - obtain “best-in-class” molecules
 - ability to develop drugs against multiple targets simultaneously

- Multiple commercial collaborations with focus on multi-specific Nanobodies
 - Merck & Co., Inc.: immuno-oncology
 - Boehringer Ingelheim: oncology; ocular
 - Merck KGaA: oncology; inflammation and osteo-arthritis
 - Novo Nordisk: undisclosed
Use in Immuno-Oncology
Immuno-oncology

Changing the cancer treatment paradigm

Huge market potential
- Proven substantial survival impact
- Market expected to grow to >$43bn by 2020*
- I/O drugs expected to treat 60% of cancers*

Multiple targets
- Increasing number of targets
- Combination therapies are the next generation

Multi-specific Nanobodies
- Bind multiple targets (2, 3, 4 or 5) with one Nanobody molecule
- Potential to increase efficacy and avoid escape mechanisms
- Technology allows rapid exploration of combinations
- Manufacturing simplicity and cost-effectiveness

*BofA Merrill Lynch July 2015
Multi-specific Nanobodies

Nanobody-based T cell recruitment

- Nanobody recruiters potentially offer several key advantages
 - formatting to allow high affinity on low density tumour antigens
 - multi-specific formats to increase efficacy and/or avoid escape
 - use of either TCR- or CD3-based recruitment
 - clinically validated half-life extension to reduce dosing frequency
 - excellent CMC properties
 - robust manufacturing
Multi-specific Nanobodies

Immunology collaboration with Merck & Co., Inc.

- Heavily investing in I/O R&D pipeline (~80% of total R&D budget*)
- Keytruda® approved in advanced melanoma (first line) and metastatic NSCLC
- Sales of Keytruda® estimated to reach $6Bn by 2020**
- >160 clinical studies for Keytruda® in >30 tumor types

Merck & Co., Inc. leader in the field

- Targeting multiple immune-checkpoint modulators
- Up to 17 fully-funded Nanobody programmes
- Focus on multi-specific combinations
- €33M upfront; up to €5.7Bn in potential future milestones plus royalties

Merck & Co., Inc. and Ablynx in collaboration

First *in vivo* pre-clinical milestone (€3.5M) achieved in October 2015 with a bi-specific Nanobody

*Bryan Garnier Oct 2015 **Leerink August 2015
Ablynx’s anti-GITR Nanobody programme

Target background

- GITR is a member of the TNF receptor super family
 - expressed on multiple important immune cell types

- Unique mechanism of action and strong pre-clinical tumour model data
 - promote tumor regression through differential effects on T_{Eff} and T_{Reg}
 - enhances anti-tumor immunity through effects on other immune cells
 - synergizes with chemotherapy, radiation, cancer vaccines, checkpoint inhibitors, etc.

- Several anti-GITR mAbs in phase I
 - GITR Inc., Merck, Medimmune
Anti-GITR agonist for immuno-oncology

Advantages of a Nanobody approach

• Agonistic anti-GITR Nanobodies may have several advantages over Fc-enabled antibodies
 - smaller size – more access to tumor environment
 - multi-valency and flexible linkers – better GITR cross-linking and agonist activity
 - lack of Fc – potentially better safety profile; no T-effector cell depletion; no impact of Fc receptor polymorphisms

• Nanobody platform also offers additional flexibility
 - the ability to tailor circulating half-life from days to weeks by incorporating an anti-human serum albumin Nanobody
 - option to include Fc functionality into a multi-valent construct

Anti-GITR Nanobody

Anti-HSA Nanobody

Trivalent anti-GITR Nb (+ anti-HSA Nb)

Tetravalent anti-GITR Nb (+ anti-HSA Nb)

Tetravalent anti-GITR Nb-IgG
Nanobody formatting flexibility

Valency and linker length can improve functionality

• Increased valency

Bivalent anti-GITR Nb

Trivalent anti-GITR Nb

• Variable linker lengths

35GS

9GS

Human GITR NF-κB luciferase reporter assay

0 10000 20000 30000 40000

0 10^-14 10^-13 10^-12 10^-11 10^-10 10^-9 10^-8 10^-7 10^-6

Concentration (M)

Luminescence (r lu)

Anti-GITR Nb, bivalent, 35GS
Anti-GITR Nb, trivalent, 35GS

0 20000 40000 60000 80000

0 10^-13 10^-12 10^-11 10^-10 10^-9 10^-8 10^-7 10^-6

Concentration (M)

Luminescence (r lu)

Anti-GITR Nb, trivalent, 9GS
Anti-GITR Nb, trivalent, 35GS
In vitro activity of lead anti-GITR Nanobodies

Benchmarking versus clinical stage mAbs

- Human GITR NF-κB luciferase reporter assay

Trivalent anti-GITR Nb

Tetravalent anti-GITR Nb-IgG1

Merck & Co anti-GITR mAb (36E5)
Trivalent anti-GITR Nb1
Trivalent anti-GITR Nb2

Gitr Inc anti-GITR mAb (TRX518)
Merck & Co anti-GITR mAb (36E5)
Tetravalent anti-GITR Nb1-hlgG1
IgG1: isotype control
In vitro activity of lead anti-GITR Nanobodies

Benchmarking versus clinical stage mAbs

- Human CD4+ T cell activation assay

![Trivalent anti-GITR Nb](image1)

![Tetravalent anti-GITR Nb-IgG1](image2)

Trivalent anti-GITR Nb

Tetravalent anti-GITR Nb-IgG1
Proprietary tetravalent anti-GITR Nanobody

Efficacy as monotherapy or in combination with anti-PD1 mAb

Tumor efficacy in a syngeneic mouse model

Vehicle
Irrelevant Nb + PD-1 mAb
GITR Nb
GITR Nb + PD-1 mAb

p < 0.0001
p < 0.0001
Proprietary tetravalent anti-GITR Nanobody

Efficacy as monotherapy or in combination with anti-PD1 mAb

Individual tumor efficacy plots

- **Vehicle**: 0/10 reg
 - Tumor Volume (mm³)
 - Days post treatment
 - p = 0.0215

- **GITR Nb**: 1/10 Reg
 - Tumor Volume (mm³)
 - Days post treatment
 - p < 0.0001

- **Irr Nb + PD-1 mAb**: 0/10 Reg
 - Tumor Volume (mm³)
 - Days post treatment

- **Irr Nb + PD-1 mAb**: 5/10 Reg
 - Tumor Volume (mm³)
 - Days post treatment
 - p = 0.0215

Reg = regressed below baseline volume
Nanobodies in immuno-oncology

Using a clinically validated platform

- Key elements of the Nanobody platform are clinically validated
 - 3 different phase 2 clinical POC achieved
 - excellent safety profile
 - >1,000 patients dosed
 - iv., s.c, and inhaled delivery
 - mono-specific and multi-specific drugs
 - half-life extension possible via albumin binding

- Oncology and immuno-oncology space is vast
 - combination therapies expected to provide optimum patient benefit
 - hundreds of combinations possible, but difficult to predict best one

- “Mix and match” approach
 - rapidly make multi-specific Nanobody-based T cell recruiters and antagonists
 - get *in vivo* POC for different multi-specific combinations in 12-18 months

- “Multi-valency” to dramatically improve agonist activity
 - proven for different TNFR family members

- Further formatting flexibility
 - choose half-life
 - combine with F_C receptor

- Nanobodies can also be used as companion diagnostic
Questions

CONTACT DETAILS
Investor Relations +32 9 262 00 00 investors@ablynx.com www.ablynx.com