Nanobodies® – A Versatile Advanced Therapeutic Platform

G Van Heeke
April 21, 2015
Forward looking statements

Certain statements, beliefs and opinions in this presentation are forward-looking, which reflect the Company or, as appropriate, the Company directors’ current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this presentation regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this presentation as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its parent or subsidiary undertakings or any such person’s officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this presentation or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this presentation.
Ablynx

Corporate snapshot

CORPORATE
- Drug discovery and development company in Ghent, Belgium
- >300 employees

TECHNOLOGY
- Pioneer in next generation biological drugs – Nanobodies®
- >500 granted and pending patents

PRODUCTS
- >30 programmes – six at the clinical development stage
- Three clinical proof-of-concepts (POC)
- 2 wholly-owned products in later stage clinical development (Phase III & Phase II)
- >10 new clinical programmes anticipated over the next 3 years

PARTNERS
- AbbVie, Boehringer Ingelheim, Eddingpharm, Merck & Co, Merck Serono and Novartis

FINANCIALS
- €206M in cash at December 31st 2014
Nanobodies

Derived from heavy-chain only antibodies

- *Camelid* heavy-chain only antibodies are stable and fully functional
- Nanobodies represent the next generation of antibody-derived biologics

Ablynx’s Nanobody
- small
- robust
- sequence homology comparable to humanised/human mAbs
- easily linked together
- nano- to picomolar affinities
- intractable targets
- multiple administration routes
- manufacturing in microbial cells
Ablynx’s platform
Rapid generation of high quality biologics

Immunise llamas with antigen or use synthetic library

Wide range of highly diverse Nanobodies with 0.1-10nM affinities

Formatted* Nanobodies ready for in vivo testing

Cloning and production in microbial systems

~12-18 months

*Glycine-serine linkers from C-terminus to N-terminus
Nanobody platform

Competitive advantages

<table>
<thead>
<tr>
<th>Mix and match</th>
<th>Alternative delivery routes</th>
<th>Customised half-life extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeting different pathways at once with a single Nanobody construct, e.g. multiple checkpoint inhibitors</td>
<td>Inhalation</td>
<td>Weeks/days/hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fc</td>
</tr>
<tr>
<td></td>
<td>Needle-free</td>
<td>Albumin-binding Nanobody</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenging and intractable targets</th>
<th>Alternative delivery routes</th>
<th>Cell killing</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanobodies against ion channels and GPCRs</td>
<td>Oral-to-topical</td>
<td>Nanobody-drug conjugates</td>
<td>High-yield, high-concentration, low-viscosity, microbial production</td>
</tr>
<tr>
<td>Nanobodies can reach conserved cryptic epitopes</td>
<td>Ocular</td>
<td>Ag-1</td>
<td></td>
</tr>
</tbody>
</table>

Cell- /tissue-homing

- Cell specificity
- Immune cell recruitment
- Tissue-specific targeting

Cell killing

- Ag-1
- Ag-1
- Ag-1
RSV infection in infants
High unmet medical need

- Leading cause of infant hospitalisation and primary viral cause of infant death
 - ~300,000 children* (< 5 years) hospitalised per year in 7 major markets\(^1,2\)
 - 1.9 million outpatient visits per year for infants under 1 year of age
 - increased medical cost in the first year following RSV infection\(^3\)
 - prolonged wheezing and increased risk for asthma development\(^4\)

- No widely accepted drug available to treat RSV infections
 - Synagis\(^\text{®}\) used as prophylaxis in high-risk pre-term infants only

* Extrapolation based on estimated US prevalence
Respiratory syncytial virus (RSV)
Generation of Nanobodies to the F-protein

• Glycoprotein F trimer
 – essential for viral entry/fusion of viral and host membranes
 – highly conserved
 – several neutralisable regions / epitopes

RSV F-protein
(pre-fusion)

McLellan et al. 2013 Science
Anti-RSV Nanobody ALX-0171

Multi-valent formatting to improve potency

- Tri-valent anti-RSV (ALX-0171)
 - improve activity and strain coverage by multi-valency
 - superior virus neutralisation as compared to palivizumab

![Graph showing OD450-520 nm vs Concentration (M) for ALX-0171 and palivizumab with a 7,000-fold improvement in potency over mAb]
Anti-RSV Nanobody ALX-0171

Increased strain coverage

- **Tri-valent anti-RSV (ALX-0171)**
 - 5-fold more clinical isolates neutralised below LLOD with ALX-0171 compared with palivizumab

<table>
<thead>
<tr>
<th></th>
<th>A-strain</th>
<th>B-strain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>32</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>palivizumab</td>
<td>0 (0%)</td>
<td>11 (38%)</td>
<td>11 (18%)</td>
</tr>
<tr>
<td>ALX-0171</td>
<td>30 (94%)</td>
<td>23 (79%)</td>
<td>53 (87%)</td>
</tr>
<tr>
<td>p value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Number of strains neutralised below LLOD

Increased strain coverage
Neonatal lamb model*

Study design

- Lambs develop lower respiratory tract infection which is associated with general malaise and specific lung pathology (comparable to infants)
- Treatment at peak of viral load on day 3 post infection (symptoms and lung pathology are already clearly present)
- Lambs develop clinical symptoms such as wheezing (comparable to infants)

*Mark Ackerman, Iowa State University
ALX-0171

In vivo proof-of-concept achieved

Mean viral titers in BALF (day 6 post infection)

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>RSV Vehicle</th>
<th>RSV ALX-0171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log10 FFU/mL BAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Lung viral lesions (day 6 post infection)

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>RSV Vehicle</th>
<th>RSV ALX-0171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % Involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

ALX-0171 treatment results in

- strong reduction of viral titres in bronchoalveolar lavage fluid (BAL)
- strong reduction of gross viral lung lesions (% involved lung tissue)
 - coincides with strong reduction F-protein expression
- a clear effect on general health status
 - weakness, depression, lethargy, drooping of ears, not eating
ALX-0171

Effect on viral lung lesions

- Plum red RSV lesions seen in lungs of RSV-infected lambs on day 6 post-infection
 - present on all lung lobes assessed

Daily inhalation of ALX-0171 markedly reduced gross lung viral lesions
ALX-0171
Highly effective in RSV-infected lambs

Daily inhalation of ALX-0171 markedly reduced symptoms of illness in RSV infected neonatal lambs

- Subjective scoring (0 to 4*) of parameters that measure general health
 - “Malaise” score: weakness, depression, lethargy, drooping of ears, and not eating

* 0 = no clinical signs; 4 = animals down
ALX-0171

Current status and next steps

• Strong therapeutic effect demonstrated in a neonatal animal model for infant RSV infection

• Well tolerated in multiple Phase I studies in adults

• First-in-infant Phase IIa study initiated in Northern Hemisphere; lead-in phase successfully completed and confirmation to proceed with placebo-controlled phase of the study

• Recruitment of Phase IIa study to continue in parts of the southern hemisphere and Asia to complete recruitment in 2015 with results anticipated in H1 2016
CXCR2

• CXC chemokine receptor family (CXCR1-CXCR7)
• Binds multiple ligands incl GROα, IL-8, ENA-78, GROβ, GROγ, GCP-2, NAP-2
• Human vs NHP
 – high sequence diversity at N-terminus, ECL2 and ECL3
• CXCR2 vs CXCR1
 – conserved EL1
CXCR2
Scientific/Therapeutic Rationale

- Airway Epithelium
- Ciliated Epithelial Cells
- Goblet Cell (discharging)
- Goblet cell hyperplasia
- Mucus secretion
- Smooth Muscle
- Contraction
- Migration
- Angiogenesis
- Blood Vessel
- Fibroblast
- myofibroblast
- Microvascular leakage
- VCAM-1 expression
- Chemotaxis
- Neutrophil
- Macrophage
- Eosinophil
- T-cell
- Mast Cell
- Collagen
- Blood Vessel
- Capillary
CXCR2

Generation of Nanobodies

Immunise llamas

Construction of Nb libraries on phage + panning

Binding assays (Phage ELISA, FACS)

In vitro functional assays:
- CHO-huCXCR2 GTP\(\gamma\)S/FLIPR
- Isolated and whole blood nphil shape-change
- Nphil chemotaxis

Selectivity vs CXCR1, 4, CCRs

X-reactivity with NHP and rabbit CXCR2

Formatting and humanise

Half-life extension, DAS, epitope mapping

MoA, *in vivo* PK/PD

3x RBL/huCXCR2 and 1x RBL/cyCXCR2

3 rounds of panning against whole cells, cell membranes, peptides

77 % homology with CXCR1
33 % homology with CXCR4

92 % homology with cyCXCR2
73 % homology with rabbitCXCR2
CXCR2 lead Nanobodies

Two classes with distinct properties

- Large panel of Nanobodies identified
- Class 1 (Nb 127D1)
 - bind to 1-19 N-terminal peptide
 - partial but very potent inhibition of GROα-activation
- Class 2 (Nb 163E3)
 - do not bind to 1-19 N-terminal peptide
 - full but less potent inhibition of GROα-binding
- Bind to human and cynomolgus CXCR2
- Nanobodies do not bind CXCR1

CXCR2 Nanobodies
Understanding the MoA

- Schild experiments performed using GRO-α-stimulated [35S]GTPγS binding in the presence of a range of concentrations of
 (a) Class 1 Nb (1-19 binder)
 (b) Class 2 Nb (non-1-19 binder)
 (c) Schild plot for Class 2 binder derived from data shown in (b)
CXCR2 Nanobodies

Where do they bind?

- **Class 1**
 - N-terminal peptide
 - linear epitope

- **Class 2**
 - ECL1 and ECL3
 - complex epitope
 - conformationally sensitive

- **Class 1 and 2** recognize non-overlapping epitopes
Nanobody formatting

Biparatopic format yields the required potency and efficacy

Biparatopic is both potent and efficacious
Acknowledgements

RSV
Ablynx, Gent, Belgium
Koen Allosery, Patricia Crabbe, Joke D’Artois, Veronique De Brabandere, Steven De Bruyn, Erik Depla, Bram De Rammelaere, Tim De Smedt, Katrien Derveaux, Laurent Detalle, Holger Neecke, Thomas Stohr, Catelijne Stortelers, Katrien Vlassak, and the subteams from the Discovery, Pharma, CMC and ClinDev departments

Iowa State University
Mark Ackermann, Jack Gallup, Albert Van Geelen, Alejandro Larios

Baylor College of Medicine, Houston, TX
Brian Gilbert, Pedro A Piedra (Dept Mol. Virol. & Microbiol. Dept Paediatrics)

Instituto de Salud Carlos III, Madrid, Spain
José Melero, Olga Cano, Concepción Palomo (Centro Nacional de Microbiología)

CXTCR2
Ablynx, Gent, Belgium
Bruno Dombrecht, David Vlerick, Toon Laeremans, Soren Steffensen, A Roobrouck, S De Taeye, K Van den Heede, Karen Cromie

Novartis, NIBR, Horsham, UK
Zarin Brown, James Hunt, Michelle Bradley, SJ Charlton, Jodie Manini, Jenny Willis, Andrew Green, Emma Grot, Jack Heath, Suchete Hunjan

Aragen Bioscience, Inc
Malavika Ghosh, Rashmi Munshi

IWT, Belgium
Grant 100333 and 130562